Fifth Homework, due August 6th

1. Sketch the Graph of the parametric equation given by $x=\sqrt{t}, y=1-t$ (hint: try to eliminate the parameter first).
2. Find the tangent line to the curve $x=e^{\sqrt{t}}, y=t-\ln (t)$, when $t=1$.
3. Find the equation of the tangent(s) to $x=2 \sin (2 t), y=2 \sin (t)$ at $(\sqrt{3}, 1)$.
4. Find $d y / d x$ and $d^{2} y / d x^{2}$ for the curve given by $x=4+t^{2}, y=t^{2}+t^{3}$. For which values of t is the curve convex?
5. Find the length of the curve given by $x=e^{t} \cos (t), e^{t} \sin (t), 0 \leq t \leq \pi$.
6. Find the total length of the astroid $x=a \cos ^{3} \theta, y=a \sin ^{3} \theta$, where $a>0$.
7. Find the area of the surface obtained by rotating the astroid defined above about the x-axis.
8. Find the slope of the tangent line $r=1 / \theta$ at $\theta=\pi$.
9. Find the points at which the curve $r^{2}=\sin (2 \theta)$ has a horizontal tangent line.
10. Find the area enclosed by the curve $r^{2}=4 \cos (2 \theta)$.
